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We calculate a rigorous dual bound on the long-time-averaged mechanical energy dis-
sipation rate ε within a channel of an incompressible viscous fluid of constant
kinematic viscosity ν, depth h and rotation rate f , driven by a constant surface stress
τ = ρu2

� ı̂ , where u� is the friction velocity. It is well known that ε � εStokes = u4
�/ν, i.e.

the dissipation is bounded above by the dissipation associated with the Stokes flow.
Using an approach similar to the variational ‘background method’ (due to

Constantin, Doering & Hopf), we generate a rigorous dual bound, subject to the
constraints of total power balance and mean horizontal momentum balance, in the
inviscid limit ν → 0 for fixed values of the friction Rossby number Ro� = u�/(f h) =√

GE, where G= τh2/(ρν2) is the Grashof number, and E = ν/f h2 is the Ekman
number. By assuming that the horizontal dimensions are much larger than the vertical
dimension of the channel, and restricting our attention to particular, analytically trac-
table, classes of Lagrange multipliers imposing mean horizontal momentum balance
analogous to the ones used in Tang, Caulfield & Young (2004), we show that ε � εmax =
u4

�/ν −2.93u2
�f , an improved upper bound from the Stokes dissipation, and ε � εmin =

2.795u3
�/h, a lower bound which is independent of the kinematic viscosity ν.

1. Introduction
Forced turbulent flows are common in the natural environment. One way to char-

acterize such turbulent motion is through identifying scaling laws for the mechanical
energy dissipation rate, which capture how turbulent small-scale motions dissipate
the energy input by the large-scale external forcing. It is quite natural that properties
of the mechanical energy dissipation rate are strongly affected by different types of
forcings. In Tang, Caulfield & Young (2004, henceforth TCY04) we investigated the
specific case where stress is applied at the upper surface of a layer of fluid as happens,
for example, when wind blows over a lake. In TCY04, we considered the stress-driven
flow in a non-rotating frame and found that the mechanical energy dissipation rate
is bounded above by the laminar flow ε � u4

�/ν, and below by ε � 7.531u3
�/h, where

the mechanical energy dissipation rate is defined as

ε =
ν3

h4
〈‖∇u‖2〉. (1.1)

† Present address: BP Institute for Multiphase Flow and Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, UK.
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In (1.1)

‖∇u‖2 ≡ |∇u|2 + |∇v|2 + |∇w|2, (1.2)

is the non-dimensional deformation (using the kinematic viscosity ν and the constant
layer depth h as characteristic scales) and 〈·〉 is a spatial and temporal average defined
in more detail below. This result is satisfying for small-scale problems because the
lower bound is independent of molecular viscosity. However, when the flow domain
is significantly larger, we would also expect rotation to play an important role, and
this paper is dedicated to studying such contributions. The effects of rotation have
been considered for the problem of generating bounds on heat transport in rotating
convection (Constantin, Hallstrom & Putkaradze 1999, 2001; Vitanov & Busse 2001;
Vitanov 2001, 2003; Yan 2004), but not previously in the context of dissipation within
stress-driven flows.

In this paper, we use an approach with points of similarity to the variational method
developed by Constantin and Doering utilizing a mathematical device introduced by
Hopf (1941) to construct bounds on the mechanical energy dissipation rate (Doering &
Constantin 1992, 1994; Constantin & Doering 1995; Doering & Constantin 1996;
Nicodemus, Grossmann & Holthaus 1997a, b, 1998a, b). Following Plasting &
Kerswell (2003, henceforth PK03), we refer to the original method as the CDH
method. The CDH method is based around a non-unique decomposition of the flow
fields into a ‘background’ which satisfies the boundary conditions, and a ‘fluctuation’
away from this background which has homogeneous boundary conditions. Variational
methods may then be used (through the derivation of Euler–Lagrange equations) to
generate bounds on (for example) the mechanical energy dissipation rate, subject to
physically motivated imposed constraints, such as total energy balance, and horizon-
tally averaged momentum balances. As discussed in PK03, under the plausible though
unproven assumption of streamwise invariance, solutions to the Euler–Lagrange
equations can in principle be identified using numerical continuation techniques to
asymptotically large Reynolds numbers, which allow the identification of characteristic
scalings.

However, the particular problem which we are considering has several complications
compared to previous work, which make use of the CDH method somewhat pro-
blematic. As discussed below in more detail, since the system is rotating, it is im-
portant to apply constraints on horizontal averages of momentum both parallel and
perpendicular to the direction of application of the surface stress. Also, since we are
interested in the effect of both stress and rotation on the flow evolution of a viscous
fluid, there are two non-dimensional control parameters, e.g. an Ekman number and a
Grashof number. Furthermore, due to the effect of the rotation, the rotating laminar
solution is non-trivially different from a simple linear velocity profile, which also has
implications for the generation of simple bounds on the flow dissipation. Because of
the complexities introduced by these aspects of the flow under consideration, in this
paper, we propose a related method, which still imposes the physically important
constraints of horizontally averaged momentum, but uses a somewhat different
approach.

The critical characteristic which this method shares with the CDH method is the
flexibility in the vertical structure of the Lagrange multiplier which imposes the two
horizontal averages of momentum. Using mathematically tractable trial functions
for this Lagrange multiplier simplifies the analysis significantly compared to the
numerical methods presented by PK03, and allows us to treat the bifurcation away
from the rotating laminar solution in a natural way, as the relevant controlling
parameters are varied. For the non-rotating stress-driven flow considered in TCY04,
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this method was shown to yield the same dimensional scaling for the lower bound on
the dissipation as the full CDH method, although for the particular trial functions
tested the premultiplying numerical factor on the scaling was underestimated by 34%
as the kinematic viscosity ν → 0.

Indeed, we can generate both a lower bound and an upper bound using trial
functions within our proposed framework. Interestingly, unlike the non-rotating flow
discussed in TCY04, the rotating laminar solution ceases to be relevant as either an
upper or lower bound for sufficiently strong forcing within this framework. As in the
CDH method, we ensure the validity of the bounds by requiring that the trial functions
satisfy a ‘spectral constraint’. The spectral constraint is essentially a statement of the
energy stability (i.e. the asymptotic global stability of a flow to arbitrary disturbances
in the sense that the disturbance energy decays to zero monotonically as t → ∞ (see
for example Joseph 1976). A (notional) flow with mean profile given by the Lagrange
multiplier imposing a momentum balance determined by a solution set of the Euler–
Lagrange equations is marginally energy stable if and only if that specific solution
set corresponds to a bound. Just as in the CDH method, our method leads to a
spectral constraint, quadratic in perturbation quantities, that corresponds to verifying
that the notional flow with mean profiles determined by the Lagrange multipliers is
marginally energy stable. The asymptotic scalings of the bounds may then be found
by fixing the external stress and rotation rate, while lowering the flow viscosity ν to
the inviscid limit.

The rest of the paper is organized as follows. In § 2, we introduce the governing
equations and formulate the stress-driven flow model. In § 3, we obtain the laminar
solution to the rotating problem, and study the energy stability of the laminar solution.
In § 4, we obtain a dual bound on the mechanical energy dissipation rate subject to
the constraints of total power balance and mean horizontal momentum balance in
two perpendicular directions. In § 5, we construct the dual bound using a special
family of trial functions that satisfy the same governing equations as the laminar
solutions (which we refer to as the ‘pseudo-laminar profiles’). Once the rotating
laminar solution loses energy stability, we find that it is neither an upper nor a lower
bound within our framework. Finally, in § 6, we draw some conclusions, in particular
illustrating points of similarity and difference between our method and the CDH
method.

2. Formulation
We consider an incompressible layer of fluid confined in a zonal channel with con-

stant depth h, density ρ, and kinematic viscosity ν. With geophysical applications in
mind, we use the Coriolis parameter, f , which is related to the planetary rotation
rate, Ω , by f = 2Ω sin θ , where θ is the latitude (Gill 1982; Pedlosky 1987). Motion
is driven by a uniform stress τ = ρu2

� ı̂ applied at the upper top surface, z = 0. The
friction velocity is u� and ı̂ is a unit vector in the zonal (x) direction. At the bottom,
z = −h, there is a no-slip boundary condition. The Navier–Stokes equations can then
be scaled using ρ, ν, and h to define units of mass, time and length. The resulting
governing equations are

ut + u · ∇u + ∇p + E−1 k̂ × u = ∇2u, (2.1a)

∇ · u = 0, (2.1b)

with boundary conditions

z = 0: uz = G, vz = 0, w = 0; z = −1: u = 0. (2.2)
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Figure 1. Schematic figure of the flow geometry, showing the coordinate system, boundary
conditions and rotation axis. The stress τ acts in the zonal (x) direction. Because the layer is
shallow (h/Lx and h/Ly are very small) only the vertical component of the Coriolis force is
retained.

The important non-dimensional parameters used above are the Grashof number
G, and the Ekman number E, defined as

G ≡ τh2

ρν2
=

u2
�h

2

ν2
, E ≡ ν

f h2
. (2.3)

We sometimes use a parameter, Ro�, a ‘friction’ Rossby number, defined by

Ro� =
√

GE =
u�

f h
. (2.4)

Because Ro� is independent of ν, the inviscid asymptotic limit is obtained by taking
G → ∞ with Ro� fixed. It is interesting to make a rough numerical estimate of Ro�

using geophysical values. For example, if u� = 0.01m s−1, f = 10−5 s−1, ν = 10−6 m2 s−1

and h = 4000 m, then Ro� = 0.25 and G =O(1015). Thus in the geophysical regime Ro�

is a smallish number and G is very large.
We are considering a re-entrant channel, so that in the zonal (or streamwise x)

direction the flow is periodic, i.e. u(x, t) = u(x+Lx ı̂, t). In the meridional (or spanwise
y) direction, the channel is bounded by impermeable stress-free walls at y = 0 and Ly .
Thus the important meridional boundary conditions are v(x, 0, z, t) = v(x, Ly, z, t)= 0.
This is a very simple idealization of the Antarctic Circumpolar Current: the flow is re-
entrant in the zonal direction and subject to a constraint that there is no net meridional
mass flux (see the discussion surrounding (2.8)). The flow is shown schematically in
figure 1.

We define a mean flow, ū(z) and v̄(z), using a time and horizontal average:

q̄(z) ≡ lim
T →∞

1

LyLxT

∫ T

0

∫ Ly

0

∫ Lx

0

q(x, t) dx dy dt. (2.5)

We also need a further volume average:

〈q〉 =

∫ 0

−1

q̄(z) dz. (2.6)

We characterize the flow using the mechanical energy dissipation per unit mass, ε,
as defined in (1.1), using the volume average defined by (2.6). Using a well-known
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argument, reprised in TCY04, one can show that ε is bounded from above by the dis-
sipation produced by the non-rotating Stokes flow, i.e. the laminar solution in a
non-rotating flow:

s = G(z + 1)ı̂; ε � εS =
u4

�

ν
=

ν3

h4
G2. (2.7)

We seek opportunities to improve this upper bound, but our main goal is to find a
lower bound on ε.

With geophysical applications in mind, we are interested in a channel whose depth
is much less than both horizontal dimensions, i.e. Lx and Ly are both much greater
than unity. In this circumstance we might expect that the impact of the sidewalls at
y = 0 and Ly is relatively minor. But associated with the sidewalls, there is a mass-
conservation constraint that at every y

∫ Lx

0

∫ 0

−1

v(x, t) dz dx = 0. (2.8)

This condition is relevant to all real channel flows, and entails an undetermined
pressure drop across the channel, supported by the rigid sidewalls at y = 0 and Ly .
Thus it is physically inconsistent to assume that pressure is a periodic function of y –
the pressure must have a linear component, p ∝ y, to ensure that there is a net drop
between y =0 and Ly . This pressure drop is the main agent through which distant
sidewalls influence the flow in the middle of the channel. This issue has been ignored
by applications of the CDH method, which tacitly assume that all dynamical variables
are periodic functions of x and y, so that for instance the horizontal average of py

is zero. In the non-rotating case this issue is probably unimportant because only the
zonal (x) momentum constraint is incorporated into the bound. However if rotation
is important then it is essential to use both the x and the y momentum constraints.
Incorporating the y momentum constraint forces one to confront (2.8) and the as-
sociated unknown pressure drop.

3. The rotating laminar solution and its energy stability
In the middle of the channel, away from the sidewalls, the rotating laminar solution

of the Navier–Stokes equations (2.1a) has the form

u = GU (z)ı̂ + GV (z)̂ . (3.1)

This laminar solution inevitably varies from the non-rotating laminar Stokes flow s
defined in (2.7) due to the effect of the Coriolis force. The solution is obtained by
solving

−V = EUzz, (3.2a)

U − Ug = EVzz, (3.2b)

with the boundary conditions U (−1) = V (−1) = 0, Uz(0) = 1 and Vz(0) = 0. The
‘geostrophic velocity’, Ug ≡ −Epy , is determined by requiring that

∫ 0

−1

V (z) dz = 0. (3.3)
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Figure 2. (a) The laminar solution to equations (3.2) for two values of η ≡ (2E)−1/2. The
zonal (x) velocity U is plotted with solid lines, and the meridional (y) velocity V is plotted
with dashed lines. Both velocities are scaled with η so that they are O(1) so that flows with
different values of η can be compared. The flow develops boundary layers when η � 1. (b)
The surface zonal velocity U0(η) (defined in (3.6) and plotted with a solid line) and geostrophic
velocity Ug(η) (defined in (3.5), and plotted with a dashed line).

The uniform pressure gradient Ug produces the cross-channel pressure drop mentioned
in the discussion surrounding (2.8).†

The solution of (3.2) and (3.3) is

U + iV = Ug(η)

{
1 − cosh(σηz)

cosh(ση)
+

1

σηUg(η)

sinh(σηz̄)

cosh(ση)

}
, (3.4)

where σ ≡ 1 + i, z̄ ≡ 1 + z, η ≡ (2E)−1/2, and

Ug(η) ≡ cosh(2η) + cos(2η) − 2 cosh(η) cos(η)

η[sinh(2η) − sin(2η)]
. (3.5)

The zonal velocity at the surface is U (0) = U0(η), where

U0(η) ≡ 3 cosh(2η) + 2 + 3 cos(2η) − 8 cosh(η) cos(η)

2η[sinh(2η) − sin(2η)]
. (3.6)

Figure 2(a) shows laminar velocity profiles at two values of η, while the functions
Ug(η) and U0(η) are shown in figure 2(b).

3.1. Rapid rotation E � 1

In the rapidly rotating limit, with η = (2E)−1/2 � 1, the interior solution is (U, V ) =
(Ug, 0) and all the shear is confined to Ekman layers at z = 0 and z = −1. In this
case, the expressions above simplify to Ug(η) ≈ 1/η, U0(η) ≈ 3/2η and

U ≈ 1

η

[
1 − e−ηz̄ cos ηz̄ + 1

2
eηz (cos ηz + sin ηz)

]
, (3.7a)

V ≈ 1

η

[
e−ηz̄ sin ηz̄ + 1

2
eηz (sin ηz − cos ηz)

]
, (3.7b)

where z̄ ≡ 1 + z.

† In the non-rotating case the laminar solution is the Stokes flow in (2.7), with py = px = 0.

However if the flow is turbulent then the Reynolds stress v′w′ might drive a v̄(z), which satisfies
(2.8). Thus there is a cross-channel pressure drop in both the non-rotating and rotating cases.
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3.2. The mechanical energy dissipation of the laminar solution

The laminar dissipation is

εL =
ν3

h4
G2 × U0(η) =

u4
�

ν
× U0(η), (3.8)

where U0(η) is the non-dimensional function defined in (3.6). If E � 1 (strong rotation)
then using U0 ≈ 3/(2η) � 1, the expression above reduces to

εL ≈ 3u4
�√

2νf h
. (3.9)

Notice that the laminar dissipation above is smaller than the Stokes dissipation
defined in (2.7) by a factor of

√
E � 1 and, unlike in the non-rotating flow discussed

in TCY04, the laminar dissipation is neither an upper nor a lower bound on the
actual dissipation.

3.3. Energy stability of the laminar solution

Standard arguments (e.g. Drazin & Reid 1981) show that the laminar solution (3.4) is
globally asymptotically or energy stable (see Joseph 1976) provided that the Grashof
number, G in (2.3), is sufficiently small. Specifically, if

G < Ges(E), (3.10)

then disturbance energy decays monotonically. The energy stability eigenvalue, Ges(E),
is defined by

Ges(E) = min
u′

(
〈||∇u′||2〉

〈Uzu′w′ + Vzv′w′〉

)
. (3.11)

The minimum above is over the set of all incompressible velocities, u′ = (u′, v′, w′),
satisfying homogeneous boundary conditions corresponding to (2.2). Explicitly, the
energy stability eigenvalue Ges(E) is obtained as the smallest eigenvalue of the Orr
problem:

2∇2u′ − Ges


w′

0
u′


Uz − Ges


 0

w′

v′


Vz = ∇p′, (3.12)

with the pressure p′ determined so that ∇·u′ = 0.
We can solve this Orr problem by assuming that in the middle of the channel,

the boundary conditions on the sidewalls are insignificant, and so expand the flow
into Fourier modes in the horizontal directions and use Chebyshev polynomials
in the vertical direction (see e.g. Boyd 2001): u′(x, y, z) = û(z)ei(kx+ly), p′(x, y, z) =
p̂(z)ei(kx+ly). The boundary conditions on the perturbation fields are

û(−1) = 0, ûz(0) = v̂z(0) = ŵ(0) = 0. (3.13)

Using D to denote ∂/∂z, equation (3.12) becomes

2(D2 − k2 − l2)û − Ges


ŵ

0
û


 Uz − Ges


0

ŵ

v̂


Vz −


ikp̂

ilp̂
Dp


 = 0, (3.14)

and Ges is found corresponding to different η by identifying the minimum value
across possible choices of k and l in wavenumber space. We have found several
energy stability points for different values of η as shown in table 1, implying that
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η k l Ges(Ro�) Ro� Ees

0 0 2.08 51.73 ∞ ∞
0.7071 0.11 2.08 51.88 7.2 1
2.1213 1 1.87 63.19 0.88 0.11
7.071 2.11 0.65 442.50 0.21 0.01

21.213 2.99 0.58 3099.00 0.062 0.0011
70.71 3.92 0.31 30291.22 0.017 0.0001

212.13 4.69 0.15 261193.55 0.0057 0.000011

Table 1. Solutions of the eigenproblem (3.14) at the energy stability points, their dependence
on the friction Rossby number Ro� defined in (2.4), and the corresponding Ees(Ro�) =
Ro�/

√
Ges(Ro�) associated with these points.
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Figure 3. (a) The eigenvalue Ges(η) obtained by solving the eigenproblem (3.14) (solid line)
and the asymptotic approximation Ges(η) ≈ 5.86η2 + 21.8η (dashed line). (b) The angle θ
between the orientation of the horizontal rolls and the meridional direction. In the non–rotating
limit (η = 0) the orientation is θ = 0 (completely meridional, with k = 0). As the rotation rate
increases, and η becomes large, θ → π/2, and l → 0.

asymptotically, Ges ≈ 5.86η2 + 21.8η. We show the general relationship between Ges

and η in figure 3(a).
The orientation of the horizontal rolls associated with the most unstable perturba-

tion changes with η ≡ (2E)−1/2. The non-rotating limit is η = 0, and in this case k is
also zero; the roll axis is in the zonal (x) direction and u′

x = p′
x =0. As η increases,

the roll axis rotates towards the meridional (y) direction. In the rapidly rotating
limit η → ∞, the axes of the rolls are parallel with the meridional (y) direction and
v′

y =p′
y = 0. The orientation of the rolls as a function of η is shown in figure 3(b).

4. Upper and lower bounds
In this section we obtain complementary upper and lower bounds on the mechanical

energy dissipation rate ε subject to the integral constraints of total power balance
and global horizontal momentum balance in both the x- and y- directions using the
technique discussed in TCY04. Although the basic idea is similar to the CDH method,
the procedure is simpler than that required by the CDH method to generate the full
bound.
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We begin by decomposing the flow velocity into a mean (ū, v̄), plus a perturbation
u′ so that the (non-dimensional) dissipation satisfies

〈||∇u||2〉 −
〈
ū2

z

〉
−

〈
v̄2

z

〉
− 〈||∇u′||2〉 = 0. (4.1)

The global energy integral is obtained by dotting u into the momentum equation
(2.1a) and volume averaging. The result can be written as

〈||∇u||2〉 − G〈ūz〉 = 0. (4.2)

It is important to note that rotation plays no role in this global expression. The
second term on the left-hand side is the (non-dimensional) surface stress, quantified
by the Grashof number G, as defined in (2.3), times the average surface velocity,
given by u(x, y, 0, t) = 〈uz〉.

Horizontally averaging the horizontal components of the momentum equation (2.1a)
yields the constraints

(u′w′)z − ūzz − E−1v̄ = 0, (4.3)

(v′w′)z − v̄zz + E−1ū − E−1ug = 0, (4.4)

where the ‘geostrophic velocity’, ug, is

ug ≡ −E−1py = − lim
T →∞

E−1

LyLxT

∫ T

0

∫ Lx

0

[p]
y=Ly

y=0 dx dt. (4.5)

Just as in the laminar solution, the geostrophic velocity, which is equivalent to a
large-scale pressure difference, is required to ensure that 〈v〉 = 0. We assume that
ugz = 0. This assumption is physically plausible because py is dominantly due to a
very slight meridional tilt of the free surface of the fluid. According to the hydrostatic
relation, this tilt produces a meridional pressure gradient which is independent of
depth.

We obtain a lower bound on 〈||∇u||2〉 by forming the linear combination:

(4.1) + α(4.2) − G 〈Λz(z)(4.3)〉 + G 〈Ωz(z)(4.4)〉. (4.6)

This combination imposes the global energy constraint through α, and independently
the two momentum constraints at every height. Optimization over α, Λ and Ω

is therefore analogous to the improvement of the original CDH method proposed
initially by Nicodemus et al. (1997a) in the context of plane Couette flow. In this linear
combination, α is a constant and Ω(z) and Λ(z) are arbitrary functions satisfying the
homogeneous boundary conditions

Ωz(−1) = Ω(−1) = 0, Λ(0) = Ω(0) = 0. (4.7)

In the linear combination (4.6), we use integration by parts to take a z-derivative
from ūzz and v̄zz. The homogeneous boundary conditions on Λ and Ω ensure that
the terms which fall outside integrals vanish. A crucial intermediate step follows from
the observation that

〈Λzūzz〉 = [Λzūz]
0
−1 − 〈Λzzūz〉, (4.8a)

= G[Λz]
0
−1 − 〈Λzzūz〉, (4.8b)

= G 〈Λzz〉 − 〈Λzzūz〉. (4.8c)

In (4.8b) we have used the identity ūz(−1) = ūz(0) = G. This identity, amounting
to global zonal momentum balance, is obtained by integrating the averaged zonal

momentum equation over z and using
∫ 0

−1
v̄ dz = 0. Notice also that the geostrophic
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velocity disappears because 〈Ωzug〉 = −〈Ωugz〉 =0, provided ug is independent of z

throughout the channel, showing how crucial this assumption is to our derivation.
Following the integration by parts, one can write the dissipation as

(1 + α)〈||∇u||2〉 =
〈[

ūz + 1
2
G(α − Λzz − E−1Ω)

]2〉 − 1
4
G2〈(α − Λzz − E−1Ω)2〉

+
〈[

v̄z − 1
2
G(E−1Λ − Ωzz)

]2〉 − 1
4
G2〈(E−1Λ − Ωzz)

2〉
+G2 〈Λzz〉 + H, (4.9)

where H[u′, Λ, Ω] is the functional

H[u′, Λ, Ω] = 〈||∇u′||2〉 + G〈u′w′Λzz〉 − G〈v′w′Ωzz〉. (4.10)

The identity in (4.9) expresses the non-dimensional mechanical energy dissipation
〈||∇u||2〉 in terms of the production G〈ūz〉 and a projection of the mean momentum
balance onto the functions Ω(z) and Λ(z). The ‘spectral constraint’, analogous to that
of the CDH method, is the requirement that

0 � H[u′, Λ, Ω], (4.11)

for all incompressible velocity fields u′ with homogeneous boundary conditions. From
inspection of (4.10), and by analogy with the energy stability of the laminar solution
discussed in § 3, the spectral constraint corresponds to the requirement that the flow
with mean velocity shear U z = (Λzz, −Ωzz, 0) is energy stable. Therefore, the spectral
constraint is an expression of energy stability for a notional flow determined by the
Lagrange multipliers, Ω(z) and Λ(z), imposing the horizontally averaged momentum
balance. Notice that the boundary conditions imposed in (4.7) are not those of the
actual flow. This is a difference between our notional flow and the background flow
of the CDH method, which also acts as the Lagrange multiplier which imposes
horizontally averaged momentum. We proceed by assuming that it is possible to find
Ω(z) and Λ(z) so that the spectral constraint (4.11) is satisfied.

Now we return to (4.9) and let ℵ ≡ 1 + α. Since α is a general Lagrange multiplier,
we need to treat the cases where ℵ is positive and negative separately. It is thus
convenient to repose (4.9) as

〈||∇u||2〉 = ℵ−1
〈[

ūz + 1
2
G(α − Λzz − E−1Ω)

]2
+

[
v̄z − 1

2
G(E−1Λ − Ωzz)

]2
+ H

〉
+ 1

2
G2〈1 + E−1Ω + Λzz〉 − 1

4
G2ℵ − 1

4
G2Fℵ−1, (4.12)

where F is the functional

F[Ω, Λ] ≡ 〈(1 + E−1Ω + Λzz)
2 + (Ωzz − E−1Λ)2 − 4Λzz〉. (4.13)

Using integration by parts, and the boundary conditions in (4.7) to show that 〈ΩzzΛ〉 =
〈ΩΛzz〉, one rewrites F as

F[Ω, Λ] = 〈(1 + E−1Ω − Λzz)
2 + (Ωzz + E−1Λ)2〉. (4.14)

Posing the dissipation as in (4.12), and realizing that F is non-negative, it is
straightforward to generate bounds for either sign of ℵ = 1 + α.

First suppose that ℵ > 0. Then we obtain a lower bound on the dissipation 〈||∇u||2〉
by dropping the first positive term on the right-hand side of (4.12):

G−2〈||∇u||2〉 � 1
2
〈1 + E−1Ω + Λzz〉 − 1

4
ℵ − 1

4
Fℵ−1. (4.15)
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Viewed as a function of ℵ, the right-hand side (4.15) has a maximum at ℵ =
√

F.
Substituting ℵ =

√
F into (4.15) gives the best lower bound available by optimizing

over ℵ > 0:

G−2〈||∇u||2〉 � 1
2
[〈1 + E−1Ω + Λzz〉 −

√
〈(1 + E−1Ω − Λzz)2 + (Ωzz +E−1Λ)2〉]. (4.16)

Now return to (4.12) and suppose that ℵ < 0. Dropping the first term on the right-
hand side of (4.12) now produces an upper bound. Thus the inequalities are reversed
in (4.15) and (4.16). The other difference is that the ℵ-optimization problem now
results in a smallest upper bound at ℵ = −

√
F, and so the sign in front of the square

root in (4.16) is now a plus.
We summarize our dual bounds as

B−[Λ, Ω] � G−2〈||∇u||2〉 � B+[Λ, Ω], (4.17)

where the bounding functionals, B±[Λ, Ω], are

B±[Λ, Ω] ≡ 1
2
[1 + E−1〈Ω〉 + 〈Λzz〉 ±

√
〈(1 + E−1Ω − Λzz)2 + (Ωzz + E−1Λ)2〉]. (4.18)

In these expressions, Ω(z) and Λ(z) are any two functions which satisfy the boundary
conditions in (4.7) and the spectral constraint in (4.11).

5. The pseudo-laminar solution
Further progress depends on obtaining extremes of the right-hand side of (4.18)

by choosing Λ(z) and Ω(z). This choice is restricted by the boundary conditions in
(4.7) and the spectral constraint H � 0. As noted in our discussion of (4.11), the
spectral constraint corresponds to demanding that the flow with mean velocity shear
U z = (Λzz, −Ωzz, 0) be energy stable. Therefore, loosely, it is reasonable to think that
Λz is analogous to ū and −Ωz is analogous to v̄. This motivates us to write

Λz = β(Ũ − Ũg) , Ωz = −βṼ, (5.1)

where Ũ (z) and Ṽ (z) are obtained by solving the ‘pseudo-laminar’ problem

−Ṽ = ẼŨzz, (5.2a)

Ũ − Ũg = ẼṼzz, (5.2b)

with the boundary conditions

Ũ (−1) = Ṽ (−1) = 0, Ṽz(0) = 0 , Ũz(0) = 1. (5.3)

Notice that the final boundary condition above sets the amplitude of the pseudo-
laminar velocity fields (Ũ , Ṽ ). We refer to (Ũ , Ṽ ) as the pseudo-laminar problem
because the parameter Ẽ is generally not equal to E, and indeed we find that the best
bounds we can construct using (Ũ , Ṽ ) are obtained by making Ẽ a function of G.

The best bounds are produced by setting the amplitude parameter β in (5.1) so
that the spectral constraint (H � 0) is marginally satisfied:

η̃ ≡ (2Ẽ)−1/2, β =
Ges(η̃)

G
. (5.4)

Above, Ges(η̃) is the energy stability function shown in figure 3(a).
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The advantage of the pseudo-laminar problem is that using (5.1), (5.2) and (5.3),
and some integration by parts, one can prove the following identities:〈

Ω2
zz + Λ2

zz

〉
= β2Ũ0, (5.5a)

〈Ω2 + Λ2〉 = β2Ẽ2(1 − Ũ0), (5.5b)

〈Ω〉 = βẼ(Ũ0 − 1). (5.5c)

Ũg(η̃) and Ũ0(η̃) have the same functionality as Ug(η) and U0(η) defined in (3.5) and
(3.6). With the results in (5.2), the dual bound in (4.18) becomes

B±(G, Ẽ; Ro�) =
1

2
[1 − βγ + β(1 + γ )Ũ0

±
√

1 − 2βγ + β2γ 2 + β2Ũ0(1 − γ 2) − 2βŨ0(1 − γ )], (5.6)

where γ ≡ Ẽ/E = Ẽ
√

G/Ro�, and β(Ẽ, G) is determined by (5.4). We use the friction
Rossby number Ro� ≡

√
GE in preference to E because, as explained in the discussion

surrounding (2.4), the inviscid limit is G → ∞ with Ro� fixed.
For orientation, a simple special case is a laminar flow that is energy stable.† Then

we can pick β = γ = 1 and (5.6) collapses to

B± = U0(η), (5.7)

where U0(η) is defined in (3.6). This is obvious: below energy stability the flow is
laminar, and the energy dissipation is uniquely U0(E). In this case the upper and
lower bounds coincide on the laminar dissipation as they must.

Once G is increased past the energy stability threshold, Ges(E), the laminar flow is
no longer energy stable, and the laminar dissipation is neither an upper nor a lower
bound in this framework. In this case, particularly simple bounds are produced by
taking γ ≡ Ẽ/E =1 and marginally satisfying the spectral constraint with β in (5.4).
With γ = 1, (5.6) simplifies considerably so that the dual bound is

1 − G−1Ges(η) + G−1Ges(η)U0(E) � 〈‖∇u‖2〉 � G−1Ges(η)U0(E). (5.8)

In the rapidly rotating limit, with η ≡ (2E)−1/2 � 1, we have Ges(η) ≈ 5.86η2 =
2.93f h2/ν (see the dashed curve in figure 3a) and U0(E) ≈ 3E/2. Using these appro-
ximations, and expressing (5.8) in dimensional variables, we find that

u4
�

ν
− 2.93f u2

� + 6.215u2
�

√
f ν � ε � 6.215u2

�

√
f ν. (5.9)

Close to the rapidly rotating energy stability threshold, the dual bounds in (5.9) tightly
bracket ε. However as ν → 0 the bounds diverge: the upper bound asymptotes to the
Stokes dissipation and the lower bound approaches zero. To improve this situation
we must take advantage of the parameter Ẽ, i.e. one obtains better bounds with
γ ≡ Ẽ/E �= 1.

With γ �= 1 in (5.6), the simplest approach is to fix Ro� and plot B±(G, Ẽ; Ro�) in
(5.6) as a function of G for various values of Ẽ. For example, in figure 4, Ro� = 0.43.
In this case the flow is energy stable only if G is less than Ges(0.43) = 117.24. The

† If the laminar solution is energy stable the spectral constraint is ensured by taking β = 1, rather
than using (5.4).
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Figure 4. In this figure Ro� ≡
√

GE = 0.43, and the rotating laminar dissipation corresponds to
the curve ABC. The solution is energy stable if G<Ges = 117.24 (equivalently E >Ees =0.04).
Thus if G � Ges = 117.24, then the rotating laminar dissipation is the unique bound (the heavy
curve AB). The dual bounds in (5.12) bifurcate from the laminar dissipation at the energy
stability point B . If G>Ges = 117.24 the actual dissipation is between B+(G, 0.04; 0.43)
and B−(G, 0.04; 0.43). However by taking Ẽ <Ees = 0.04 (i.e. γ �= 1) one can obtain better
bounds, e.g. at the points D and E improved bounds are obtained using values of Ẽ other
than Ro�/

√
Ges.

dissipation of the laminar solution is the curve ABC in figure 4, which is obtained
from the function

BL(G; Ro�) ≡ U0(η), (5.10)

with η ≡ (2E)−1/2 = 2−1/2G1/4Ro−1/2
� . In figure 4 the curve ABC is

ABC = BL(G; Ro� = 0.43). (5.11)

The curve ABC lies between the upper and lower bounds BE and BD, which
correspond to

BE = B+

(
G,

Ro�√
Ges

; Ro� = 0.43

)
, and BD = B−

(
G,

Ro�√
Ges

; Ro� = 0.43

)
,

(5.12)

i.e. to Ẽ = Ro�/
√

Ges, or equivalently γ = β−1/2. BE and BD bifurcate from the lami-
nar dissipation at the energy stability point B . Thus, close to B , the dissipation is
tightly constrained by BE and BD. But away from B one obtains better bounds using
values of Ẽ other than Ẽ = Ro�/

√
Ges, e.g. in figure 4 the curve B−(G, 0.01; 0.43) is

a better lower bound than BD once G � 265.
By plotting B±(G, Ẽ; Ro�) as a function of G, with Ro� fixed, and with densely

spaced values of Ẽ, one obtains the optimal (as a function of Ẽ) bounds as upper
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Figure 5. Plots of the dual bounds B± in (5.6) associated with four choices of Ro�: (a) Ro� =

7.2; (b) Ro� = 0.43; (c) Ro� = 0.21; (d) Ro� = 0.13. In (a) and (b) the values of Ẽ are indicated.
The Ẽ-optimized bounds are obtained as the envelope of the family of curves generated by
continuously varying Ẽ. As G increases, curves associated with smaller and smaller values of
Ẽ become the best bound.

and lower envelopes (see figure 5). Notice that as G increases in figure 5, curves cor-
responding to smaller and smaller values of Ẽ produce the optimal bound.

Close to the energy stability threshold, and for strongly rotating flows, B+ � 1.
As G → ∞, B+ → 1 from below. Therefore, B+ associated with the pseudo-laminar
profiles always provides a better upper bound than the Stokes flow. As we can see
in figure 5, the energy stability point Ges is a function of Ro�. When Ro� decreases,
Ges(Ro�) increases, i.e. as the flow rotates faster, the laminar flow is more energy
stable. The relation between Ro� and Ges(Ro�) is also shown in table 1. Finally, one
might notice that for large values of Ro� (figure 5a), rotation is very weak, and the
bound is very similar to the non-rotating bound in TCY04.

When G is very large, asymptotic results can be derived by analytically solving the
envelope construction in figure 5. After the discussion in the Appendix, we find that
for the upper bound,

B+ → B+∞ ≡ 1 − 5.86E

2Ro2
�

, (5.13)

or, dimensionally, εmax � ε where

εmax ≈ u4
�/ν − 2.93u2

�f. (5.14)
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Figure 6. (a) Plots of the upper bound B+ as defined in (5.6) (envelope of the thin dashed
lines, each of which corresponds to a different value of Ẽ in (5.2)), the lower bound B−
(envelope of the thin solid lines), and the dissipation associated with the laminar solution
BL defined in (5.7) (the dotted line) at the choice of Ro� = 0.43. As G → ∞, the two
bounds approach their respective asymptotic limits B+∞ (defined by (5.13) and plotted with
a thick dashed line) and B−∞ (defined by (5.15) and plotted with a thick solid line). (b) A
comprehensive plot of the dual bound B± (plotted as dash-dotted lines below energy stability,
where B+ = B−, and as thin solid lines for B− and thin dashed lines for B+ above the relevant
energy stability point for the particular, labelled value of Ro�), the asymptotic lower bound
B−∞ = 2.795G−1/2 (the thick solid line) and the laminar dissipation BL (the dash-dotted lines)
for different Ro�.

This scaling approaches the Stokes dissipation rate in the limit ν → 0. For the lower
bound,

B− → B−∞ ≡ 2.795G−1/2, (5.15)

or, dimensionally, ε � εmin, where

εmin ≈ 2.795u3
�/h. (5.16)

This scaling is independent of both viscosity and rotation in the limit ν → 0.
To illustrate how the upper and lower bound move away from the laminar solution

at the laminar energy stability point and approach their asymptotic limits, we have
plotted B±, together with the laminar dissipation BL =U0(E) for Ro� =0.43 in
figure 6(a). The bounds move away from the laminar solution at the energy stability
point, and converge, as G → ∞, to the asymptotic upper and lower bounds B+∞
(shown with a thick dashed line) and B−∞ (shown with a thick solid line) defined by
(5.13) and (5.15) respectively.

In figure 6(b), we show in detail how, for different choices of Ro�, the lower bound
B− moves away from the laminar bound BL at the relevant energy stability point
(which naturally varies with Ro�). The dotted line marks the locus of energy stability
points for varying Ro�. The dash-dotted lines show the dissipation associated with
the laminar solution after it loses energy stability for fixed values of Ro� for each
curve. At a particular value of Ro�, the upper bound (plotted with a dashed line)
increases above this dissipation, and approaches its asymptotic limit B+∞, defined by
(5.13). Conversely, the lower bound (plotted with a thin solid line) then approaches
the asymptotic lower bound B−∞, defined by (5.15) (and plotted with a thick solid
line). As is apparent from the figure, not only does the bifurcation away from the
rotating laminar solution occur for higher and higher G as Ro� decreases, but also the
approach to the asymptotic bound B−∞ takes longer and longer as Ro� decreases. For
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intermediate values of G the approach of the lower bound to its asymptote depends
strongly on the particular value of Ro�, and hence the rotation rate, as fixing Ro�

implies that the Ekman number decreases as G1/2 increases.

6. Conclusions
We have constructed rigorous dual bounds on the mechanical energy dissipation rate

for surface-stress-driven rotational flow, subject to certain assumptions, in particular
that the geostrophic velocity ug defined in (4.5) is independent of depth throughout
the channel. To handle the complications associated with the Coriolis force, it is
necessary to include integral constraints which capture both components of the mean
horizontal momentum balance. Another particularly important aspect of the method
is the marginal satisfaction of the appropriate spectral constraint (e.g. as in our
determination of the parameter β in (5.4)). This is a point of similarity with PK03
and TCY04, where the optimal bounds have been obtained by solving the full Euler–
Lagrange equations, which ensures that the spectral constraint is marginally satisfied.
The approach used here is simpler than solving the full variational problem, but
retains this key aspect.

In the inviscid limit our dual bounds in (5.14) and (5.16) are

u4
�/ν − 2.93u2

�f � ε � 2.795u3
�/h; (6.1)

of course, these inequalities are likely to be conservative. If we make the plausible
assumption that ε is independent of ν in the inviscid limit, then dimensional
considerations imply that

ε =
u3

�

h
J

(
u�

f h

)
, (6.2)

where J is a dimensionless function. The lower bound above indicates that J is
greater than 2.795 for all values of Ro� = u�/(f h), but the method has not yielded
more detailed information about the scaling function J(Ro�). If the lower bound
(5.16) correctly indicates the scaling of the inviscid limit (i.e. that J is constant) then
the following picture of the mean flow emerges. The surface velocity is of order u�,
so that the rate of working of the stress is u3

�. If the velocity at depth is zero, then
the reduction from the surface maximum to u� to zero occurs in a boundary layer
of thickness ν/u�. This scenario does not seem realistic because one expects u�/f to
appear as an important length in a turbulent Ekman layer (Gill 1982).

A main complication is that the rotating laminar solution (3.4) differs from the
Stokes flow in (2.7). Thus we cannot conclude that the laminar dissipation bounds
the true dissipation in either direction except, of course, below the energy stability
threshold. When the flow is just past energy stability the dual bounds closely bracket
the dissipation and in the case of rapid rotation (Ro� � 1) the upper bound is
significantly smaller than, and therefore significantly better than, the upper bound
provided by the Stokes flow. Thus the bounds show that the Coriolis parameter f is
important directly after bifurcation away from the laminar flow.

As with bounding estimates for simpler flows, such as Couette flow, we must
view (6.1) with caution. There is no reason why a statistically stationary flow should
be organized so as to make its mechanical energy dissipation rate extreme. And even
if the u3

�/h scaling is correct, there is no reason to suppose that the quantitative
numerical factor 2.795 is fixed. It is possible that profiles other than the pseudo-
laminar functions in (5.1) might improve the bounds, although previous experience
(see TCY04) suggests that the dimensional scaling dependence of the bound may not
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change. Therefore, it would only be meaningful to carry out numerical simulation (as
done recently for the related problem of body-forced plane shear flow with stress-free
boundary conditions by Doering, Eckhardt & Schumacher (2003)) to adequately high
Grashof numbers to identify the asymptotic scaling behaviour, with which we could
then compare the bounding solutions presented here, and possibly also identify other
further constraints that we could use to improve our bounds.

We would like to thank the National Science Foundation for support under the
Collaborations in Mathematical Geosciences (CMG) initiative (ATM-0222104).

Appendix. Asymptotics for the ‘pseudo-laminar profile’
When η̃ is large (which corresponds to the behaviour as G becomes large) all terms

involving β in the square root in (5.6) are small compared to one, and so we can
simplify the bounds to be

B+ = 1 − βγ + βγ Ũ0 + β2γ 2/4 + β2(1 − γ 2)Ũ0/4 , (A 1a)

B− = βŨ0 − β2γ 2/4 − β2Ũ0(1 − γ 2)/4 . (A 1b)

In this asymptotic limit, βG ≈ 5.86η̃2, Ũ0 ≈ 3/(2η̃), and remembering that γ ≡
(2η̃2E)−1, (A 1) becomes

B+ = 1 − 5.86

2GE
+

3 × 5.86

4GEη̃
+

5.862

16G2E2
+

3 × 5.862η̃3

8G2
− 3 × 5.862

32G2E2η̃
, (A 2a)

B− =
3 × 5.86η̃

2G
− 5.862

16G2E2
− 3 × 5.862η̃3

8G2
+

3 × 5.862

32G2E2η̃
. (A 2b)

To optimize both bounds with respect to η̃, we differentiate with respect to η and so
obtain for the upper bound

η̃4 − 2G

3 × 5.86E
+

1

12E2
= 0, (A 3)

and for the lower bound,

η̃4 − 4Gη̃2

3 × 5.86
+

1

12E2
= 0. (A 4)

Equation (A 3) implies that to optimize the upper bound,

η̃4 =
8GE − 5.86

12 × 5.86E2
. (A 5)

With Ro2
� = GE2 fixed such that E → 0 and G → ∞, in the asymptotic limit

GE = Ro2
�/E � 1, and so

η̃4 =
2G3/2

3 × 5.86Ro�

. (A 6)

Surprisingly, this result suggests that the leading-order term involving G in (A 2a) is
5.86/(2GE), which is independent of η̃:

B+ → B+∞ ≡ 1 − 5.86E

2Ro2
�

, (A 7)

or, dimensionally, εmax � ε where

εmax ≈ u4
�/ν − 2.93u2

�f. (A 8)
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In the asymptotic limit, ν � 1, and so εmax approaches the Stokes dissipation rate
u4

�/ν.
Now we look at (A 4) which optimizes the lower bound. The solution for η̃ is

η̃2 =
2G

3 × 5.86

(
1 ±

√
1 − 3 × 5.862

16G2E2

)
. (A 9)

Since we are looking at a limit where the (true) laminar solution is definitely not
energy stable, and Ro2

� = GE2 is fixed, G2E2 � 1, so η̃2 takes two possible values:

η̃2
a ≈ 4G

3 × 5.86
and η̃2

b ≈ 5.86

16Ro2
�

. (A 10)

To identify the extrema, we differentiate (A 2b) twice with respect to η̃ to obtain

∂2B−

∂η̃2
=

3 × 5.862(1 − 12E2η̃4)

16G2E2η̃3
. (A 11)

Therefore, η̃a corresponds to a maximum, which is the correct choice for generating
a lower bound, whereas η̃b corresponds to a minimum, and so can be ignored.

The asymptotic lower bound associated with η̃a is

B− =
2

√
3 × 5.86

3G1/2
− 5.862

16GRo2
�

+
33/2 × 5.865/2

64G3/2Ro2
�

, (A 12)

and to leading order as G → ∞ at fixed Ro�,

B− ≈ B−∞ = 2.795G−1/2. (A 13)

Dimensionally, this result means that

ε � 2.795u3
�/h, (A 14)

a scaling that is independent of both viscosity and rotation. This is clearly an im-
provement on the simple result (5.9) obtained from choosing γ =1.

Even though our simple approach does not solve the full Euler–Lagrange equations
using the CDH method, and so we do not have a direct means of determining the
extremal flow fields, we can still estimate the structure of the mean flow by some
scaling arguments. If the lower bound obtained here yields the correct scaling, then
the zonal surface velocity u(0) decelerates greatly from its laminar value O(GE1/2) to
O(G1/2), or dimensionally, from O(u2

�/
√

νf ) to O(u�). We know that the fixed surface
stress requires the shear at the boundaries to be G. Therefore, in order to produce
the required energy dissipation, the mean flow has to develop boundary layers of
thickness O(G−1/2), the same order as the Lagrange multipliers. Dimensionally, the
boundary layers of the mean flow are O(ν/u�), considerably sharper than those of
the laminar solutions, which have boundary layer thickness of O([νh/u�]

1/2).
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